Final Report

Raw image demosaicing and filter chip

Abhishek Srikanth
Tiger Cheng
Nikhil Ghanta

ECE 337
Lab section : Tuesday 2:30 pm (#2)

TA: Nathan Conrad

17th December, 2015

Signature 1: J@QJQA%B\F,
Signature 2: _Nikhil Ghanta }\
Signature 3: %\{ @

1. Executive Summary

In cameras today, image data is captured through a massive array of sensors where
each sensor detects the intensity of one of the RGB (red, green blue) colors in set
pattern. These sensor values gets processed through a demosaicing algorithm that then
generates the digital images that are commonly seen today in standard image viewers.

Our design is a hardware implementation of Bayer demosaicing process which
interpolates raw images tiled with the 2x2, {R, G1; G2, B} array pattern to generate pixel
data. In addition to converting sensor values into pixel data, our chip is also designed to
apply filters such as brightness enhancement, white balancing and horizontal blurring.
We will be using the DE2i-150 FPGA board to implement the design.

Having this chip on-board a camera will help convert the sensor values instantly and
allow storage of the processed image. Although this process can be done on computers
using special software, an on-board chip will enhance user experience by allowing
immediate viewback of images taken, an element that would draw or retain customers
to a specific company.

We believe that our design is unique since it allows for immediate conversion of the
image along with the application of filters, something that no other chip we know off
does.

The remainder of the report delves into the technicalities of our design, the interfaces,
the operational characteristics, detailed block diagrams of modules, budgeting
information, verification plans and results obtained.

2. Design Specifications

2.1. Interfacing Specifications

PCle express
root port

Y

PCie express

Custom Logic end point

|) |

master slave master

A

slave

v

SDRAM
Controller

avalon MmM—»

FPGA

SDRAM

Figure 1. System usage diagram

Standards/Protocols used:
e The Avalon Master/Slave bus protocol is used
e PCle endpoint is master to Custom Logic
o Generation 1, transmission rate is 2.5Gbps
e SDRAM is slave to Custom Logic
e Internal MOK SRAM

Features of the design:
e |tis designed to cache values read from SDRAM

2

o This is done to save multiple reads on the SDRAM from non-contiguous
memory addresses
It is designed to cache all output values too before writing to SDRAM
o This is done to allow write operations to be continuous instead of having to
jump between reading and writing each pixel from and to the SDRAM
It is designed to have all filter outputs be calculated parallely in combination
blocks
o This allows for easy and quick availability of output values that can be
written into the SRAM cache
It is designed to have a single address line that is capable of switching from one
type of address to another for both the SRAM (rowCache|outputArr) and
SDRAM(read|write)
o This creates simplicity in wiring and design and allows address calculation
to be hidden inside a single module

2.2. Operational Characteristics

2.2.1. Functions performed by the chip

The chip is expected to carry out the following operations:
Wait for start control register to go high
Read control registers for required information (eg. image height and width, filter
type, address in SDRAM, etc)
Read Image off the SDRAM
Use SRAM to cache intensity values and processed pixel data
e Convert intensity values into pixel data based on filter type

2.2.2. Chip IO Pins
Table 1. Chip 10 Pins

Signal Name Type No Data format description
of
bits
clk Input 1 active high clock to chip
n_rst Input 1 active low reset to chip
imageWidth Input 13 unsigned binary number | width of image
imageHeight Input 13 unsigned binary number | height of image
startControlRegister Input 1 active high register to start chip
operations
start_addr_sdram Input 26 unsigned address address of start of RAW
image
finish_addr_sdram Input | 26 unsigned address address of start of
processed image
filterMode Input 2 2 bit binary depicts binary mode
betaValue Input |8 unsigned binary number | value for brightness filter
white Input 32 ARGB data white equivalent for white

4

balancing

finish_flag Output | 1 active high flag when complete image
is processed
sdram_datareadvalid Input 1 active high pulses high when data is
ready to be read
data_sdram Input 32 intensity value data read from SDRAM
sdram_read_en Output | 1 active high signal to enable read
sdram_write_en Output | 1 active high signal to enable write
address_sdram Output | 26 unsigned address address for operations
writeData_sdram Output | 32 ARGB data value to write to SDRAM
data_sram Input 32 intensity value / ARGB | data read from SRAM
data
sram_datareadvalid Input 1 active high pulses high when data is
ready to be read
sram_dataFromSDRAM | Output | 32 intensity value value to write to SRAM
(from SDRAM)
postFilterData Output | 32 ARGB data value to write to SRAM
(from window buffer)
address_sram Output | 26 unsigned address address for operations
mode_sram Output | 1 active high determines read/write
mode
addrCalc_mode_sram Output | 1 active high determines address set
accessed
sram_en Output | 1 active high signal to enable SRAM

2.2.3. Control registers

e Image Dimension Control Register
o img_width : [28:16]
o img_height : [12:0]
e Raw Image Start Address Register
o raw_img_start_addr : [25:0]
e Final Image Start Address Register
o final_img_start_addr
e Read Status Register
o start_flag : [0]
o filter_type : [2:1]
o brightness_value : [31:24]
e \White Balance Register
o red_white_balance_value : [23:16]
o green_white_balance_value : [15:8]
o blue_white_balance_value : [7:0]
e Finish Register
o finish_flag : [0]

2.2.4. Timing diagrams to illustrate the sequence of operations

clk
B4
ot
‘. startControlRegister
* sdram_datareadvalid

nish_flag L y | | | | M 1 1 | ! | | | ! | | Il
address sdram 7 ml [1 T Y T T T ¥ T T T Yal T T
riteData_sdram | I I I | I I I
exp_address_sdram
exp_write_address_sdram
-+« sram_dataFromSDRAM
* postFilterData
4 address sram
* mode_sram
* addrCalc_mode_sram
* sram_en
* data_sram
4 sram_datareadvalid

500000000 ps . |
Cursor 1 753441 ps |

The chip stays dormant until the startControlRegister is set high. Operations start here.

Figure 2. Start detection

6

startControlRegister
sdram_datareadvalid

;-4 imageWidth

imageHeight
start_addr_sdram
finish_addr_sdram

B filterMode

betavalue
white

;-4 data_sdram

sdram_read_en
sdram_write_en
finish_flag

B-# address sdram
B+ writeData sdram
0“4 exp _address sdram

exp_write_address_sdram
sram_dataFromSDRAM
postFilterData

mode_sram
addrCalc_mode_sram

" sram_en

[e
4

data sram
sram_datareadvalid

977
0000001b
977

468
0000008a
ff8a521b

0000001b

0
500000000 ps

Cursor 1 | 166490000 ps |

[e FIRSTIROVWIREADIN| One row read and processed output cached in SRAM |

|Cached output writen to IF
One row read and processed output cached in SRAM h]

Figure 3. Single round of operations

Above image shows one row (specifically, the first round) of operations.

In the first segment, a row of values are read from the SDRAM and cached in SRAM.
This segment never repeats itself throughout the processing of the image at hand.

In the second segment, a row of data is read from sdram and sram cache to generate
pixel data that is stored in another sram cache.

In the third segment, cached pixel data is written into the SDRAM.

i startcuntmineg's’tejr
sdram_datareadvalid

cache
first

row of
image

; sdl_‘am)\i_rité;e'n

sl
address_sdram
writeData_sdram 1551b | ff21551b f21551b
' exp_address_sdram 234 [958 [] [1407
exp_write_address sdram i i i i
sram_dataFromSDRAM

Fiqure 4. Snapshot of a few rounds (rows 0,1,2,3.4) of operation
The image above shows processing of multiple rows.
Note how segments keep repeating themselves after the caching of first row.

LU L UL L LU

461 1462)\ 1464 1465 !

" startControlRegister
sdram_datareadvalid
mageWidth
imageHeight

- start_addr_sdram
finish_addr_sdram

- filterMode

" betaValue
white
data_sdram

addr(}—alc_mode_sram — -
#_sram_en 171 L 1]] O 7|
. data_sram | fflal81f

sram_datareadvalid } I | 5 e v e T - | 70

I E! Cursor 1 |'803696939 ps

Finally, we can see the finish flag pulsing high once all processing is complete

Figure 5. Finish flag at end of operations

2.2.5. Timing waveform diagrams for operation of external devices

SDRAM

 Read Waveforms

Elh Ik FERLERE] 0l

clk S g O Oy Oy Yy Iy

1ead_n \ i mad_n
wiile_f wthe_n _||| J || |
thipsalest [| DO | chipselect ___f 3 f |
W= qusE 1 o i wafrequest | | o {
sdfiass J= [T | fx] addess L 4M T | J= 1
Ieerabis | [Tam e | byteanable |}V | I = |
readdalresid [R | L wiiledata {2 | | T
isaddala oo o Jm |
Figure 6. SDRAM Read/Write Waveforms

SRAM

r- — [' - _—

ek | | | | | l tlk [| [|

e wite _,-""—""-.—
chipsatest _ f % chipsewt /S N
atdiess i " addiess X .

bifsendble ¥ _wm X beanable T "

isaddala W m . witiedata ¥ _m b

Figure 7. SRAM Read/Write Waveforms

PCle
clk s 127 G N % Y o T T R PSS e e i e e o S R R R
raad rmad __J—||.

wrilE _.II L] f 'I_ e - .
waerorst B [W wamegquest O \ L
addisss j-" 1a | | addass I-"’ 1 .
bursicaunt j' j E 1 bursicaunt _TJ—!—
beenable _ 0@ jem | = 1 byteanabls LIS I

wiilsdata :: m_ jor oz || raaddalavalid J \] 1._

maddata [l!_;[joi IF-E 1

Figure 8. PCle Write/Read Waveforms

Avalon Master

||I!:|:| raad _lI | / 4
wiile . f] L e - HE—
mmﬂg a1\ | i N SR S S—
address e Ju B N T address _]—m
T LI O = - readdatavaid | e W S |
= 3 : . ; s raaddals [m_;[= Im im |

Figure 9. Avalon Master Write/Read Waveforms
Avalon Slave

" Read Waveforms - Write Waveforms

ik | | | | | | tlk | | | |
1aad ! N, mead
il e s !
chipsaie f 5 chipsehec] i ,
.
'S T

addiess A= | address o w X
readdala] wiitedata ¥ p

Figure 10. Avalon Slave Read/Write Waveforms

10

2.2.6. Flow chart of sequence of operations

read Start ‘ read one value from read another value from
flag from - +| SDRAM and from SRAM r - SDRAM and from SRAM
PCle into the Window Buffer into the Window Buffer
read first row of values - save results to
from SDRAM into AT outputCache in SRAM,
rowCache in SRAM i update rowCache

| e —

[
write outputCache

values into SDRAM (Set finish flag
output address

2.3. Requirements

Since the chip is expected to be used in cameras, speed and data size management
become key points of focus. Being placed in a camera implies that all conditions
applicable to a camera become applicable to the chip as well. For instance, cameras
should be operational in a wide variety of seasons and therefore perform in a wide
range of temperatures. Temperature specifications will follow what is common in
industry, ie. 0-40 deg Celsius.

The objective of the ASIC implementation, as mentioned above, is to maximize the
throughput of the chip, hence providing fast processing of the image intensity values.
Since the camera could be using a large number of sensors, the chip must be able to
deal with the large size of images as well.

To deal with the above requirements, a few targets have been set.

1.) Throughput : To process an image (~750KB, 3MB) in less that half a second.
2.) LookUp table count : To be able to fit on de2i-150 FPGA (less than 150,000 tables)

11

3. Final Design

3.1 Design Architecture

Architecture Block Diagram —_—

Window
Buffer

Control
Registers

Bayer
demosaic and

Image Storage liliers

(Raw and
processed)
SRAM:
rowCache
outputCache

startControlRegister
sdram_datareadvalid

* imageWidth
imageHeight

- start_addr_sdram

* finish_addr_sdram

- filterMode
betavalue

0
0
2
1
i
5
5
0
0
0
2

o

white

data_sdram

* sdram_read_en
sdram_write_en

* finish_flag

- address_sdram

" writeData_sdram

* exp_address_sdram
exp_write_address_sdram

10000004e

o M Mo oo o
o
o
=]
=]
=]
=
"

e0000093 L2 write signal sent to DSRAM to write data
postFilterData 000000
address_sram 2

* mode_sram 0

" addrCalc_mode_sram 1

" sram_en 0

* data_sram X0
sram_datareadvalid 0

= i —
cursor1| 323301 ps |

SDRAM read and write operations

12

3.1.2. SRAM read and write operations

white
data_sdram
* sdram_read_en
i sdramﬁwritéﬁen y | 2
finish_flag] = e =3 | = I 1 —_
add[&_sdfam‘ X =Snaz 1 {»nas____ | T T T T T T T T]
writeData_sdram
exp_address_sdram
" exp_write_address_sdram
sram_dataFromSDRAM l : 0000004e | | |
postFilterData 0 “#ilocde | [#ch I I I : 7 I [f7i9aar |
address_sram) __fBeba | 518 |5 | 5 5 18701
mode_sram B e |] i I
" addrCalc_mode_sram
‘. sram_en

« sram_datareadvalid
WE en i it -
mode WB : I read mode
addrCalc_sram_en
addrCalc_sram_mode
‘ addrCalc_sdram_en
addrCalc_sdram_mode
whl | | value read
wb2 -2 I S R 1 — i

L = 0000071

P bs : read|valid
Cursor 1 | 398849893 ps

SRAM read and write operations

3.1.3. Window Buffer operations

betaValue
white
data_sdram

* sdram_read_en

4 sdram_write_en e el g T el el
finish_flag [t [t [I A A A R S A
address_sdram
writeData_sdram
exp_address sdram
exp_write_address sdram
sram_dataFromSDRAM . .

' postFiterData _ HT. Mode 010 is to write into Mode 100 is to write into wb4 _|RSCi ARSI LI
mode_sram wbl <= wb2
addrCalc_mode_sram [1 VAR i wb3 <= wb4
sram_en
data sram
sram_datareadvalid

' addrCalc_sram_en
addrCalc_sram_mode

* address_sram

“ addrCalc_sdram_en

4 addrCalc_sdram_mode |
WB_en \ 7) B

100 ;101

4f
wha 70 4
000000000 ps
Cursor 1 | 399224729 ps

when WB_en goes high,

We ses data In Vb= chanige We see this when WB_en is high

Window Buffer operations

13

3.1.4. Address calc update operations

betaValue

white

data_sdram

sdram read en Address Calc sram maintains address to
sdram_write_en A -=> rowCache for EFWtEHSity values
finish_flag ! -> outputArr for processed pixel data

o i These values are toggled using the mode
writeData_sdram

exp_address_sdram
exp_write_address_sdram
sram_dataFromSDRAM
postFilterData

< mode_sram

 addrcale_moda_sram _ Upon examining address_sram, we see that Here, we see that when addrCalc_sdram_en is 1 &
- ;'atmﬁ" both addresses have been updated by 1 the mode is for raw image address, the value in
ata_sram S
sram_datareadvalid address_sdram increases.
“ WB_en . . -
“ mode WB s 10b 101 ~ Likewise, the other address value will increase

addrCalc_sram_en E LS | i _ l when in the other mode
addrCalc_sram_mode

address_sram
addrCalc_sdram_en

When enable goes high, these values update
Address Calc sdram, like the sram, maintains addr
Here we see enable high on both modes = toraw image and output image locations.

MNow 1000000000 ps
Cursor 1 | 398890107 ps

Address calculator update operations

14

3.2. Functional Block Diagrams

3.2.1. address_calc module

Used to keep track of sram, both rowCache and outputArr, and sdram addresses, both
the address of the raw image and that of the output image.

It comprises of mappings to both the submodules.

I/0 Type Size (bits) | Name

input wire 1 clk

input wire 1 n_rst

input wire 1 sram_mode

input wire 1 sdram_mode

input wire 1 sram_update

input wire 1 sdram_update

input wire 1 start_flag

input wire 13 image_width

input wire 26 start_address_sdram
input wire 26 finish_address _sdram
input wire 26 rowCache_address sram
input wire 26 output_address_sram
output reg 26 sdram_address
output reg 26 sram_address

Relevant waveforms:
T B

4 clk
“ n_rst [T T t — — T
4 sram_mode T[T I e e il AL AL AAARAL
4 sdram_mode L LA ALLLLANA
' sram_update {
* sdram_update L
* start_flag I | i | | | | | | | | | | PR I PR
% imageiw'idth
B sdram_startAddr

_sdram_finishAddr
rowCacheStart

outputAddrstart
exp_sdram_read
‘exp_sdram_write
exp_sram_rowCache
exp_sram_output
sram_address
sdram_address

First Segment updates rowCache and output addr, second outputarr, third output sdram

15

3.2.1.1. i_col_counter module

Keeps track of the column index that is being accessed in the rowCache of sram.
With regards to circuitry, It is an up counter of 13 bits.

1/0O Type Size (bits) Name

input wire 1 clk

input wire 1 clear

input wire 13 rollover_val
input wire 1 count_enable
output wire 1 rollover_flag
output wire 13 value

Relevant waveforms:

= o o -
[=]
(=]

Lo 11 12 10 |l|£‘[-'l 11 12 |0 |1 |£|D 1)2 j0 11

1
0
0
0

16

3.2.1.2. i_wr_counter module

Keeps track of the column index of output Array when writing pixel data to sdram.
With regards to circuitry, It is an up counter of 13 bits.

1/0O Type Size (bits) Name

input wire 1 clk

input wire 1 clear

input wire 13 rollover_val
input wire 1 count_enable
output wire 1 rollover_flag
output wire 13 value

Relevant waveforms:

= 1o]) O 0 oy o o) 1 g 5 ot o g

o o
= =
=]

1
o
o
0

—

0O 1loJo 11120 |

17

3.2.1.3. j_row_counter module

Keeps track of the row index of image. Rolls over when whole image is done being
processed. With regards to circuitry, It is an up counter of 13 bits.

1/0O Type Size (bits) Name

input wire 1 clk

input wire 1 clear

input wire 13 rollover_val
input wire 1 count_enable
output wire 1 rollover_flag
output wire 13 value

Relevant waveforms:

= 1o]) O 0 oy o o) 1 g 5 ot o g

o o
= =
=]

1
o
o
0

—

0O 1loJo 11120 |

18

3.2.1.4. sram_address_calc module

Sub-module used to keep track of sram addresses, both the address of rowCache and
the output Array. It comprises of a mux, and 2 flex counters.

1/0O Type Size (bits) Name

input wire 1 clk

input wire 1 n_rst

input wire 1 load

input wire 1 mode

input wire 1 enable

input wire 13 image_width

input wire 26 sram_rowCacheStart
input wire 26 sram_outputAddrStart
output wire 26 sram_addr

Relevant waveforms:

utputAddrStart

p_rowCache
B4 exp outputAddr | | | | |
B4 sram address |440 : R CCRCRRCACRCR AR

19

3.2.1.5. sdram_address_calc module

Sub-module used to keep track of sdram addresses, both the address of the raw image
and that of the output image. It comprises of a mux, and 2 up counters that keep going

up.
1/0O Type Size (bits) Name
input wire 1 clk
input wire 1 n_rst
input wire 1 load
input wire 1 mode
input wire 1 enable
input wire 26 start_address
input wire 26 finish_address
output wire 26 sdram_addr

Relevant waveforms:

First segment updates raw image address while the second segment updates address
where image is output. This test is repeated again after a load(clear) operation.

20

3.2.2. controlUnit module

This is the brain of the chip. It is responsible for sending read and write enables to
sdram and sram, it sets window buffer mode and enables the same, it updates address
calc and other counters and keeps track of number of operations complete.

It is essentially a state machine.

I/0 Type Size (bits) | Output

input wire 1 clk

input wire 1 n_rst

input wire 1 start_flag

input wire 1 dataRead_sram

input wire 1 dataRead_sdram

input wire 1 rollover _i

input wire 1 rollover_j

input wire 1 rollover_i_wr

output reg 1 enable i

output reg 1 enable_j

output reg 1 enable i wr

output reg 1 enable_addr_calc_sram
output reg 1 enable _addr_calc_sdram
output reg 1 enable_WB

output reg 1 enable_sram

output reg 1 read_en_sdram

output reg 1 write_en_sdram

output reg 1 mode_addr_calc_sram
output reg 1 mode_addr_calc_sdram

21

output reg 3 mode_WB

output reg 1 mode_sram

output reg 1 finish_flag

Relevant waveforms:

cache First Row first col “another col another col output img-first col +another col another col output Img end:

The waveform is a demo of operations that would take place on an image.

The image used here is a small 3x3 image since the states repeat.

Each marked segment refers to a set of operations such as caching the first row,
processing the first column, processing other columns and outputting the image to
sdram

22

3.2.3. filterTopLevel module

Top level module for all filters. It is used to pick the output of any one of the 4 filters that
have been designed.
It is basically a mux with a lot of port mappings to smaller filter modules

1/0O Type Size (Bits) Name

input wire 1 clk

input wire 1 n_rst

input wire 32 in

input wire 2 filterMode

input wire 8 brightnessCoeff
input wire 3 wb_mode

input wire 1 wb_en

input wire 32 white

output reg 32 result

Relevant waveforms:

For a given input, the output can be seen for some of the opcodes like brightness
addition (01) and demosaicing (00).

23

3.2.3.1. debayer module

SubModule to FilterTopLevel that takes in RGGB values and returns an ARGB value.
Circuit consists of an adder and a lot of rewiring (for division).

I/0O Type Size (bits) Name
input wire 32 in
output wire 32 out

Relevant Waveforms:

B4 [tb debayerfin [1200ff31 (00000000
B jtb_debayerfout |ff127f31 |ff000000

Different outputs are checked for different inputs using assert statements

24

3.2.3.2. horBlur module (horizontal blur)

SubModule to FilterTopLevel that takes in ARGB values and carries out a horizontal

blurring effect.

Circuit consists of 3 shift registers, adders and a lot of rewiring (for division).

1/0O Type Size (bits) Name
input wire 1 clk

input wire 1 n_rst
input wire 1 wb_en
input wire 3 mode_wb
input wire 32 data
output reg 32 blur

Relevant Waveforms:

I A BRI AT

ff000000

[RUAALr | Fornt ' 515

\ A Frofaror J(Forbrbr | Frardrdr N

We see that only when mode is 101 and enable is high does the shift take place.

Upon shift taking place we notice the output values updating.

25

3.2.3.3. whiteBalance module

SubModule to FilterTopLevel that takes in ARGB values and scales values based on
the white provided.

Circuit consists of lookup tables for GF(2”8) division using multiplicative inverses and
multipliers to carry out the said division.

I/0 Type Size (bits) Name
input wire 32 in
input wire 32 white
output wire 32 out

Relevant waveforms:

B in

..‘._L out

Bd white ffEEE | [FAAAE

B4 R out
B4 G_out 18
E"‘ B_out af af c7

Here, the white balancing is set to a value of 24’hFFFFFF.
We can see the input come in and the output change accordingly.
R _out, G_out, B_out are concatenated along with the alpha value to give the output.

26

3.2.3.4. brightnessFilter module

SubModule to FilterTopLevel that takes in beta value and adds brightness accordingly.

Consists of an adder and division by rewiring.

I/O Type Size (bits) Name
input wire 32 in
input wire 8 beta
output wire 32 result

Relevant waveforms:

0000000

101010

Here we see that for a given input and beta value of 10, the output is appropriately
scaled up. To note that in this test bench the input is formatted as RGYB where Y is
disregarded and alpha is considered FF.

27

3.2.4. rggb module (re-ordering module)

The rggb reordering module is essentially a multiplexer that receives 4 different
arrangements of pixel intensity values, and based on the row and column index values
as selection lines, it arranges them to always throw out the pixels in RGGB pattern.

1/0O Type Size(bits) Name
input wire 8 wb_1
input wire 8 wb 2
input wire 8 wb_3
input wire 8 wb_4
input wire 1 row
input wire 1 col
output reg 32 out

Relevant waveforms:

Hap wh 3 |
Bt wh2
B4 wh1
£ row
o-“. out

L :ml
B4 R
o4 G2
04 Gl
a4 B

Here, wb_1..4 and row,col are the inputs and we see how changing any of them
immediately result in out changing values.

28

3.2.5. wBuffer module (window buffer)

The window buffer performs reads from the SRAM and SDRAM and writes back onto
the SDRAM after performing the operations of reads and writes based on the opcode
sent to it by the control unit.
It contains 4 registers with next state logic that replace each register with new values
provided some set conditions are met.

I/0O Type Size(bits) Name
input wire clk
input wire 8 nrst
input wire 8 enable_CU
input wire 3 mode
input wire 8 data_read
input wire 8 data
output reg 8 w_1
output reg 8 w_2
output reg 8 w_3
output reg 8 w_4

OPCODE | OPERATION

001 READ FROM SRAM INTO WB_ 1

010 READ FROM SRAM INTO WB_2

011 READ FROM SDRAM INTO WB_3

100 READ FROM SDRAM INTO WB_4

101 SHIFT VALUES FROM 4->3 AND 2->1

Relevant waveforms:

29

We see that for each opcode (defined in the table above), the expected operation takes
place. The result of each opcode can be verified by looking at tb_1..4 which contain
values within each of the 4 window buffer registers.

30

3.3. Standards and Protocols

3.3.1. PCIE

The interfaces choices we had, to work with our custom logic were fixed due to us
implementing our design on an FPGA.

The biggest benefit of using the PCI express architecture is that it facilitates or provides
independent high speed serial data transfer lines with dedicated bus bandwidths.

The PCI express 1 on the FPGA is also scalable depending on the desired throughput,
it has a maximum throughput of 4GB/s.

The PCle is based on point to point topology with separate serial links between different
devices and the root complex, in our project the custom logic chip is one of the
endpoints to the root complex.

Since the PCle is already integrated in the FPGA we did not have an opportunity to
reduce the area by using other standards and protocols.

The PCle 1 has a data transmission rate of 2Gbit/s per lane and allows 16 lanes(x16) to
be used.

The PCle for our design acts a master to both the custom logic chip as well as the
SDRAM controller.

PCle is used to write the raw image onto the SDRAM and sets the control registers on
the custom logic.

3.3.2. SDRAM

The SDRAM is organized as a matrix of cells and interfaces with the SDRAM controller
to communicate with the custom logic.

The SDRAM consists of a certain number of address bits dedicated to column
addressing(CAS) and a number of address bits dedicated to row addressing(RAS)

which makes it easier for us to read and write pixel values.

The memory location is referenced by placing address on address lines.

31

The SDRAM controller acts as a slave to both the custom logic chip and the PCle.

The SDRAM in our design is used to store the pixel intensity values and these values
are read off from the SDRAM by the custom logic to perform the necessary reordering,
and filter operations. This was necessary as the FPGA wouldn’t have enough registers
to store data for high resolution images.

The resultant processed pixel values from debayering, filters, etc are written back onto
the SDRAM.

3.3.3. SRAM

SRAM was selected cache image row data to prevent resampling pixel data each time
the window buffer moves to debayer the next pixel and prevent CAS / RAS penalties.

The SRAM was a better decision than reading and writing off the SDRAM since it would
save exactly 3 reads from each SDRAM address at the cost of a single read from the
SRAM.

It also allowed the data to be read and written into both SDRAM and SRAM in a

contiguous fashion, that was not possible with out prior design that used only the
SDRAM.

32

3.4. Timing and Area Budgets
Due to implementation on the FPGA, timing and area budgets were set to be under
system specifications of the Terasic DE2i-150 FPGA Board as referenced in Table 1,

Appendix A.

33

4. Verification

4.1. Verification plan and corresponding results

4.1.1. Detailed Verification Test Breakouts

Correctness of whole program on FPGA
e Shown in Demo: Incompete
e DSSC(s) Proved: 4 and 5
e Highest Level of Design Module Involved:
o Total Design/Chip
e Test Bench Expectations/Requirements
o To obtain valid RGB image from provided RAW image
o To obtain well filtered images if certain filter is selected
e Compare output image of chip with same image processed on a separate
script/program
e Pre/Post Processing needed
o Create expected output using other script/program
o Load raw image onto sdram
o Read and check final image from sdram
e Main Verification Test Steps:
o Write program on intel chip to interface with PCle
o Have raw image written onto sdram
o Have control registers set
o wait till control registers provide finished flag
o read processed image from sdram
o compare processed image with expected output

Correctness of custom logic using simulation
e Shown in Demo: Shown
e DSSC(s) Proved: 1 and 2
e Highest Level of Design Module Involved:
o Total Design/Custom Logic
e Test Bench Expectations/Requirements
o To obtain valid RGB image from provided RAW image

34

o To obtain well filtered images if certain filter is selected
e Compare output image of chip with same image processed on a separate
script/program
e Pre/Post Processing needed
o Create expected output using other script/program
o Ready image to be read so that SDRAM may be simulated
o Compare saved processed image with the expected one
e Main Verification Test Steps:
o Set control registers to initialize custom logic to start running
m provide image data on sdram read call
m save to output image on sdram write call
m while control registers provides finished flag do above
o compare processed image with expected output

Correctness of window buffer transitions
e Shown in Demo: No
e DSSC(s) Proved: 1
e Highest Level of Design Modules(s) involved:
o Window Buffer
e Test bench Expectations/Requirements:
o Have temporary data registers to store the block results and compare
them with expected results.
o Perform operations and have the expected pixel values in respective
positions in window buffer and check with block results.
e No external references are needed
e No pre/post processing is needed
e Main Verification Test Steps:
o Check each window of the window buffer to see if the expected pixel value
is present by comparing with test buffer.
o Keep track of each transition and operation happening in the buffer using
waveforms behavior.

35

Correctness of image filters

Shown in Demo: Yes
DSSC(s) Proved: 2
Highest Level of Design Module(s) involved:
o Image Filters
Test bench Expectations/Requirements:
o Check image produced after filter and compare with respective Averaged
value/math algorithm results depending on selection of filter
No pre/post processing is needed
Main Verification Test Steps:
o Receive the test vectors for each case and perform the math
o Compare the calculated output pixel from the math algorithm for each filter
with expected outputs
o Check pixel by pixel values with expected output to verify result

4.1.2. Backup and Sub-Module Tests

Correctness of RGGB box type select module

Shown in Demo: No
DSSC(s) Proved: 1
Highest Level of Design Module(s) involved:
o DeBayer and filter
Test bench Expectations/Requirements:
o Have test vectors of sample RGGB intensity values that are reordered and
compare them block outputs
No external or premade references needed
No pre/post processing is needed
Main Verification Test Steps:
o Generate 4 bytes consisting of pixels in random arrangement and provide
as input to block
o Have expected order of pixels in RGGB arrangement and compare
o Repeat above steps for different pixel groups of 4

36

http://stackoverflow.com/questions/21107560/simple-way-to-check-if-an-image-bitmap-is-blur

Correctness of Address Calculator (Address Calculator Block)
e Shown in Demo: No
e DSSC(s) Proved: None
e Highest Level of Design Module Involved:
o Address Calculator Block
e Test Bench Expectations/Requirements
o To generate correct read and write addresses
o To update read and write addresses correctly
o To check for row and column roll overs
e Manually calculate expected addresses and match with obtained results
e No pre/post processing is needed
e Main Verification Test Steps:
o Reset all sub-blocks in the address calculator
o Provide start address for sram and sdram
o Provide enable to update information in the block
o Check for correct rollover values
o Check if addresses output are correctly updated

Correctness of Control Unit (Control Unit Block)
e Shown in Demo: No (shown in final presentation)
e DSSC(s) Proved: None
e Highest Level of Design Module Involved:
o Control Unit Block
e Test Bench Expectations/Requirements

o To correctly traverse through all the states
o To ensure correct output is returned at each state
o To ensure states change as expected when input changes
e Manually calculate expected output based on provided input
e No pre/post processing is needed
e Main Verification Test Steps:
o Reset Control Unit
o Provide inputs and see if output matches corresponding state

37

Correctness of PCle interface (PCle express endpoint)
e Shown in Demo: Incomplete
e DSSC(s) Proved: 3 and 4
e Highest Level of Design Module Involved:
o FPGA interfaces
e Test Bench Expectations/Requirements
o To write raw image data onto sdram
o To read processed image data from sdram
o To set and get control register data
e Manually calculate expected values and match with obtained values
e No pre/post processing is needed
e Main Verification Test Steps:
o Program intel cpu to interface with sdram
o Write data onto sdram
o Read same data from sdram and compare with data written
o Write data to control register
o Read same data from control register to see if successfully read/written

SDRAM Protocol Interfacing Test
e Shown in Demo: Incomplete
e DSSC(s) Proved: 3
e Highest Level of Design Module Involved:
o Image Storage Block
e Test Bench Expectations/Requirements
o To correctly receive data from PCle
o To correctly receive data from SRAM
o To correctly output data to SRAM
o To correctly output data t
e Manually calculate expected output based on provided input
e No pre/post processing is needed
e Main Verification Test Steps:
o Write a test image to SDRAM via PCle

38

o Write a test image from SDRAM to PCle
o Visual inspection of image / hash check

SRAM Protocol Interfacing Test
Shown in Demo: No (On simulation)
DSSC(s) Proved: None
e Highest Level of Design Module Involved:
o Window Buffer, Read Buffer, Write Buffer
e Test Bench Expectations/Requirements

o To successfully read the correct row/data from SDRAM
o To successfully write data out to SDRAM
e Manually calculate expected output based on provided input
e No pre/post processing is needed
e Main Verification Test Steps:
o Write a test stream to SRAM from SDRAM
o Read the test stream from SRAM
o Compare read stream with test stream

4.2. Steps taken to verify each block at each level of hierarchy

Almost each block had a corresponding test bench written for it (Only 2 trivial
combination blocks were skipped).

To ensure correctness of modules, even underlying blocks were provided with test
benches that ran successfully on both source and mapped simulations.

Top level block test benches (this includes address calculator, control unit, window
buffer and customLogicTopLevel) were written such that the test bench was to simulate
actual operations.

It is to be noted that some test benches might throw assert errors since minor changes
were made and these changes were not reflected in their test benches due to a lack of
time. The modules do work though based on top level test benches providing expected
outputs.

39

5. FPGA Resource Usage

Minimum Usage Results:

|Family
Device
Timing Models
Total logic elements
Total combinational functions
Dedicated logic registers
| Total ragistars
| Total pins
Total virtual pins
Total memory bits
Embedded Multiplier 9-bit elements
{Total GXB Receiver Channel PCS
Total GXE Recaver Channel PMA
| Total GXEB Transmitter Channal PCS
Total GXB Transmitter Channel PMA
Total PLLs

Cyclona |V GX
EP4CGX150DF31CT
Final

12,198 /149,760 (8 %)
9661/149.760 (6 %)
8371/149.760(6 %)
8489
171/508(34%)

1]
157.416/66835520(2%)
0/7T20(0%)
1/8(13%)
1/8(13%)
1/8(13%)
1/8(13%)
2/18(25%)

40

6. Results

1. (2 points) Test benches exist for all top level components and the entire design. The test
benches for the entire design can be demonstrated or documented to cover all of the functional

requirements given in the design specific success criteria. : COMPLETE

2. (4 points) Entire design synthesizes completely, without any inferred latches, timing arcs, and,
sensitivity list warnings. COMPLETE (sram_simulation block not part of design)

3. (2 points) Source and mapped version of the complete design behave the same for all test

cases. The mapped version simulates without timing errors except at time zero. PARTIALLY
COMPLETE (95% complete) (top level mapped simulation untested since sram_simulation takes too
long to run. All submodaules run as expected in source and mapped)

4. (2 points) A complete IC layout is produced that passes all gecometry and connectivity checks.
ECE337 Full Project Proposal Guidelines Fall 2015

5. (2 points) The entire design complies with targets for area, pin count, throughput (if
applicable), and clock rate. The final targets for these parameters will be determined by course
staff based on your design review. Failure to reach any of the targets will result a score of 1 out
of 2 provided that you are within 50% on area, 10% on pin count, and 25% on throughput. Doing

worse in any category will result in a score of 0 out of 2.

(2.5 points) To demonstrate the working of bayer demosaicing using system verilog simulations :
PARTIALLY COMPLETE (Image renders but color is off)

(1.5 points) - To demonstrate the working of filters using system verilog simulations.

Filters used are:

1. Horizontal Averaging Blur : COMPLETE

2. Color White Balancing : PARTIALLY COMPLETE (90%)(works but values rollover beyond a
certain number to give inverted colors)

3. Contrast and Brightness changes : COMPLETE
FPGA:
(1 points) - To demonstrate that the CPU can write raw image data to the SDRAM and read processed
image from SDRAM using the PCle on FPGA : INCOMPLETE
(1 points) - To demonstrate that the CPU can modify the custom logic control registers and take
action based on their values using the PCle on FPGA : PARTIALLY COMPLETE (Modification to demo
program is running. Data is being read and written to SDRAM)
(2 points) - To demonstrate complete working of bayer demosaicing and filter application on FPGA :

INCOMPLETE

41

7. Appendix A
Data Sheets and Guide to Design Data

mg65/ECE337/Project
/Presentations
337 designreview.ppt
337 Final Presentation.pdf
/FPGA
app.c
/Project
Contains many ppm files, including results to images
/analyzed
/createCFA
convert.cpp
/testimages
Contains original test images (not raw) in ppm format
/docs
/mapped
generated verilog files
/reports
generated reports
/schematic
/scripts
gfGen.py (Script to generate multiplicative inv on GF(2/8))
/source
address_calc.sv
risingEdgeDetector.sv
tb_horblur.sv
brightnessFilter.sv
sdram_address_calc.sv
tb_i_col_counter.sv
controlUnit.sv
sram_address_calc.sv
tb_i_wr_counter.sv
customLogicTLD.sv
sram_simulation.sv
tb_j row_counter.sv
debayer.sv

42

tb_address_calc.sv
tb_risingEdgeDetector.sv
delaySingleClock.sv
tb_brightnessFilter.sv
tb_sdram_address_calc.sv
filterTopLevel.sv
tb_controlUnit.sv
tb_sram_address_calc.sv
flex_counter.sv
tb_customLogicTLD.sv
tb_sram_simulation.sv
horblur.sv
tb_customLogicTLD.sv.bak
tb_wbuffer.sv
i_col_counter.sv
tb_debayer.sv

transcript
i_wr_counter.sv
tb_delaySingleClock.sv
wbuffer.sv
j_row_counter.sv
tb_filterTopLevel.sv
whiteBalance.sv

rggb.sv
tb_flex_counter.sv

43

Table 1

gnj i) |'_‘='= R 2‘5 i

Following is more detailed information about the blocks in Figure 1-3:

FPGA device

Cyclone IV EP4CGX150DF31 device
149,760 LEs

7200 M9K. memory blocks

6,480 Kbits embedded memory

8 PLLs

0 COoO0

FPGA configuration
o JTAG and AS mode configuration
o EPCS64 senal configuration device
o On-board USB Blaster circuitry

Memory devices

o 128MB (32Mx32bit) SDRAM
o 4MB (1Mx32) SSRAM
o 64MB (4Mx16) Flash with 16-bit mode

SD Card socket
o Provides SPI and 4-bit SD mode for SD Card access

Connectors

Ethernet 10/100/1000 Mbps ports

High Speed Mezzanine Card (HSMC)

40-pin expansion port

VGA-out connector

VGA DAC (high speed triple DACs)

DB9 serial connector for RS-232 port with flow control

Clock

o Three 50MHz oscillator clock inputs
o SMA connectors (external clock iput/output)

o T o o I o i B o

Display
o 16x2 LCD module

rutzﬁ_l Terasic DE2i-150 User Manual

www.terasic.com

44

8. Appendix B
Simulation Results

TABLE OF CONTENTS:
8.1. General Briefing

8.2. Expected throughputs
8.3. Output 1 (Image: Lena)
8.4. Output 2 (Image: Tiger)

8.1. General Briefing

Please note that all waveforms from the top level diagram and from each blocks’
individual test bench has already been attached to the document in previous sections.

We kindly request you to refer to those as and when required.

With regards to simulation results:

Although great progress was made with the FPGA, no conclusive results were obtained
from it.

The simulations on questaSim were much more successful and were managed to
obtain results for various images.

The results from a couple of the many images we tested our custom logic on are shown
in sections 8.3. and 8.4.

8.2. Expected Throughputs
We had set expectations for our chip to run in 1 second for images that are about 5MB

in size.
From results of “lena” and “tiger” images we got the following:

Image Size of Image Time taken
lena ~750KB 0.068 sec
tiger ~2.9MB 0.266 sec

45

8.3. Output 1 (Image: Lena)

(a) RAW input image that contains camera intensities

(b) output after bayer demosaicing (no filters applied)

(c) output after application of brightness filter

(d) expected output from bayer demosaicing (no filters applied)

(e) output after application of horizontal blur filter

(f) output after application of white balancing (note: white balanced values have
rolled over, hence inverted)

We notice that there is a stream of green and purple that cuts through the result images
which is not a part of the expected output. After great debugging, the issue has been
narrowed down to either an issue with the raw *_out_fpga file (we generated the same
using a homebrew C program to contain intensity values as integers. It is not the one
shown above). The other possibility is an issue with our rggb re-ordering module.
Nevertheless, we are glad to observe that besides the color, the image has not come
out looking distorted or unrecognizable.

46

8.4. Output 2 (Image: Tiger)

7 x [tiger_postChip_noFilter.ppm -8 x tiger_postChip_brightness.ppm - ox
File Edit View Image Go Help File Edit View Image Go Help I view Image Go Help

@ & £ B |4 4u Previous mp Next & & & &

a8 8 & &
T T

4 Previous mp Next | & &

lous mp Next

1280 x BOD pixels 2.9MB 50%
£ tiger.ppm -0 xR tiger_postChip_blur.ppm Y tiger_postChip_whiteBalance.ppm - oD%

1281 x 801 pixels 29MB 50% 19/28

file Edit View Image Go Help File Edit View Image Go Help File Edit View Image Go Help

. " @ @ 8 £ S (3 = - & F 9 % B €
4 Previoss WpNext | & G @ & L W |4 4 Previous Bprue & S @ & £ D[4 durrevious pNext | & G @ @& | £ U |4

. A T
1280 x 80O pixels 29 MB 50%

(a) {top left} RAW input image that contains camera intensities

(b) {top mid} output after bayer demosaicing (no filters applied)

(c) {top right} output after application of brightness filter

(d) {btm left} expected output from bayer demosaicing (no filters applied)

(e) {btm mid} output after application of horizontal blur filter

(f) {btm right} output after application of white balancing (note: white balanced
values have rolled over, hence inverted)

We notice that the output for a grayscale image such as the one above matches exactly
what was expected. The debayered images look as expected and the filters too look like

they are working correctly when applied to a grayscale image.

NOTE: The RAW input images are meant to have a green shade to them since cameras
have twice the number of green sensors as they do red and blue.

47

