

Purdue University
ECE 368 – Project 2

HUFFMAN COMPRESSION
Abhishek Srikanth

Format of compressed files
1. A single unsigned long long integer is the first thing written into the file. This is used to denote the number of

characters that have been encoded into the compressed file.

2. The Huffman tree information is then stored. The format for the Huffman tree information is as follows:

a. While encoding, the Huffman tree is traversed using post-order traversal and the data is hence

written the same way. A single bit is used to denote if the node being printed is a leaf node or not.

b. A bit of value 1 denotes a leaf node and is followed by 8 bits that represent the character at that

node. A bit of value 0 denotes a non-leaf node and hence is not followed by any character after it.

3. The file is then encoded using the Huffman tree. Each characters path from the root is encoded into small

bits where a bit of value 1 represents the moving right from a node, and 0 represents moving left.

For illustration purposes, the following example has been furbished:

Text.txt: “aaaaabbc\n” Tree:

File information:

9 // llu that represents number of characters in the file

1011 0001 // 1 represents a leaf node printed in post-order

0101 1000 // and is followed by the character which I have

1110 0001 // underlined

0100 0101 // 0 represents a non-leaf node on the tree

1000 0100 // all values after last 0 are simply wasted/padding

1111 1000 // This is the main body of the file. 1 represents moving right

0010 0110 // and 0 represents moving left. Decoding this we get text.txt again.

EOF character // main body may have extra characters at the end (here a 0 bit is extra).

Program flow

Huff.c

 Yes, A Huffman tree has been used in huff.c program

 It is used to generate the header information by traversing in post order.

 It is then used in encoding the input text file by finding the encoded value for each character by traversing

from root and then writing the encoded bits into the text file.

‘#’

‘#’

‘b’ ‘#’

‘c’ ‘\n’

‘a’

Trees

.

Unhuff.c

 Yes, A Huffman tree has been used in unhuff.c.

 As the header file is read, all command ‘1’ values are pushed into a stack, and when a command ‘0’ is read,

two elements are popped, combined and pushed back into the stack. This eventually creates the huff Tree.

 When the file main body is read, the tree is traversed based on input. 1 moves right in the tree and 0 left.

 Upon reaching a leaf node, the character is printed and the process is repeated again from the tree root.

Sources used
 Problem statement provided for project 2 in ECE 368.

o Process used to generate Huffman tree from a list of frequencies was understood and similar

procedure with stacks was adopted.

 Did NOT use code/resources from ECE 264 assignment.

Results:
Original file Name Original file Size *.huff file Size Decompressed file Size Is Matching Compression Ratio

Empty_file 0 2 0 TRUE 0

two_chars 2 5 2 TRUE 0.400

Multiple_same_char 6 5 6 TRUE 1.200

simple 221 177 221 TRUE 1.249

10k 10,030 5,414 10,030 TRUE 1.853

Large_two_char 25,500 3,196 25,500 TRUE 7.979

Half_million 50,156 26,833 50,156 TRUE 1.869

massive 1,222,588 652,993 1,222,588 TRUE 1.872

From slope of the plot we can see that an average file is compressed by a factor of nearly 2.

That said, compression depends on the number of different characters, and to prove this, “Large_two_char” is a

perfect example of where a large file is compressed in very little space.

Required flags
Need “–lm” to link with math library for both huff.c and unhuff.c.

Must compile “datastruct.h” along with the c files.

Also, my program may not run with the “-O3” optimization flag.

To make it run, either the flag may be entirely ignored or the optimization flag “-O2” may be used.

1. gcc –Wall –Werror huff.c datastruct.h –o huff –lm –O2

2. gcc –Wall –Werror unhuff.c datastruct.h –o unhuff –lm –O2

y = 1.868x + 2773

-1000000

0

1000000

2000000

0 100000 200000 300000 400000 500000 600000

No

